Diese Lernressource enthält elementare Rechenbeispiele zu der Lernressource "Mehrdimensionale lineare Regression"
Lineare Regression kann man als Optimierungsproblem verstehen, bei der man den Fehler für die 3D-Datenpunkte versucht über alle Datenpunkte zu minimieren.
Als Beispieldaten verwenden wir im affinen Modell
Für ein affines Modell berechnet man den Bildvektor durch eine Matrixmultiplikation und anschließender Translation über . Mit dem obigen Beispielvektor ergibt sich:
Mit definiert man die affine Abbildung wie folgt:
Darstellende Matrix und Translationsvektor gesucht
[Bearbeiten]
Die darstellende Matrix und Translationsvektor sind gesucht und werden durch z.B. numerisch berechnet.
Die affine Abbildung bildet mit nach ab.
gegeben, dann transformiert man die affine Abbildung in eine lineare Funktion mit einer Matrix . Diese lineare Abbildung hat dann folgende Gestalt.
mit und
Erweiterte Matrix - erweiterter Vektor
[Bearbeiten]
Mit den oben gegebenen Matrizen und dem Vektor erhält man die erweiterte Matrix und den erweiterten Vektor wie folgt:
Beispieldaten für das lineares Funktional
[Bearbeiten]
Als konkretes Beispiel eines Datenpunktes für ein mehrdimensionales lineares Modell wählt man z.B. für , . Damit wäre der Datenpunkt
Dabei bezeichnet
einen Punkt im dreidimensionalen Raum und z.B. Temperatur und die Luftfeuchtigkeit als Messungen an dem Ort .
Durch die Transformation von affinen Abbildungen in lineare Abbildung betrachtet man nun Komponentenfunktionen von linearen Abbildung der Form , wobei eine ist.
Über die Matrix sei für den Spaltenvektor wie folgt definiert:
Matrixmultiplikation und Skalarprodukt
[Bearbeiten]
Die Komponentenfunktionen einer Matrixmultiplikation sind Skalarprodukte.
Für folgenden Matrix
ergeben sich daher die folgenden Komponentenfunktionen:
Bei der Regression betrachtet man eine Fehlerfunktion und dabei vertauscht man die Rolle von Argumenten einer Funktion und statischen Variableninhalten, denn in funktionalen Betrachtung von ist bekannt und das Argument die unabhängige Variable, mit der berechnet wird. Bei der linearen Regression sind Ein-Ausgabepaare bekannt und man sucht die Matrix , die die Datenpunkte möglichst gut approximiert.
Der Fehlervektor gibt komponentenweise an, ob der von berechnete Vektor im Vergleich zu dem Datenvektor zu klein () oder zu groß ist ().
Der Fehlervektor erhält man nun über:
Der Fehlervektor gibt in dem obigen Beispiel mit der Matrix an, dass bei Eingabe von der berechnete Vektor in der Wert ersten Komponent um 1 zu klein im Vergleich zum Messwert ist und in der zweiten Komponente der berechnete Wert 1 Einheit oberhalb des Messwertes liegt.
Der quadratische Fehler ergibt aus dem Quadrat der euklidischen Länge (Norm) des Fehlervektors mit
Dabei ist die euklidische Norm für einen Vektor wie folgt definiert:
Diese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.
Dieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Maschinelles Lernen' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.