Kurs:Reelle und komplexe Analysis (Sheffield 2007)/Abschnitt 2.4/latex

Aus Wikiversity

\setcounter{section}{4}

Seien $V$ und $W$ endlichdimensionale normierte ${\mathbb K}$-Vektorräume und
\mathl{G \subseteq V}{} eine offene Teilmenge. Für eine Abbildung \maabb {\varphi} { G } { W } {} und einen fixierten Vektor
\mathl{u \in V}{} ist die Richtungsableitung in Richtung $u$ (falls diese existiert) selbst eine Abbildung \maabbeledisp {D_{ u}\varphi} {G} {W } {P} { { \left( D_{u} \varphi \right) } { \left( P \right) } } {.} Als solche macht es Sinn zu fragen, ob
\mathl{D_{ u}\varphi}{} in Richtung
\mathl{v \in V}{} differenzierbar ist. Wir sprechen dann von \stichwort {höheren Ableitungen} {.} Der folgende Satz heißt \stichwort {Satz von Clairaut} {} oder auch \stichwort {Satz von Schwarz} {.}





\inputfaktbeweis
{Differenzierbarkeit/Satz von Schwarz/Fakt}
{Satz}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{G }
{ \subseteq }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} offen und \maabb {\varphi} {G} {W } {} eine Abbildung,}
\faktvoraussetzung {so dass für
\mavergleichskette
{\vergleichskette
{u,v }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die zweiten Richtungsableitungen
\mathl{D_{ v} D_{ u}\varphi}{} und
\mathl{D_{ u} D_{ v}\varphi}{} existieren und stetig sind.}
\faktfolgerung {Dann gilt
\mavergleichskettedisp
{\vergleichskette
{ D_{ v} D_{ u}\varphi }
{ =} { D_{ u} D_{ v}\varphi }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

Durch Betrachten der einzelnen Komponenten von $\varphi$ bezüglich einer \definitionsverweis {Basis}{}{} von $W$ können wir annehmen, dass
\mavergleichskette
{\vergleichskette
{ W }
{ = }{ {\mathbb K} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ {\mathbb K} }
{ = }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. Wir wollen den eindimensionalen Mittelwertsatz der Differentialrechnung anwenden. Sei
\mavergleichskette
{\vergleichskette
{ P }
{ \in }{ G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein fixierter Punkt. Wir betrachten die Abbildung
\mathl{(s,t) \mapsto \varphi(P+su+tv )}{} und studieren diese für hinreichend kleine $s$ und $t$. Wir fixieren diese \zusatzklammer {für den Moment} {} {} und betrachten die differenzierbare Abbildung
\mathdisp {\sigma \longmapsto \varphi(P+\sigma u + tv) - \varphi(P + \sigma u)} { . }
Nach dem Mittelwertsatz gibt es ein \zusatzklammer {von $s$ und $t$ abhängiges} {} {}
\mavergleichskette
{\vergleichskette
{ s_1 }
{ \in }{ {]0,s[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ \varphi(P+su+tv)-\varphi(P+su)-\varphi(P+tv)+\varphi(P) }
{ =} { s \cdot ({ \left( D_{u} \varphi \right) } { \left( P+s_1 u + t v \right) } - { \left( D_{u} \varphi \right) } { \left( P+s_1 u \right) }) }
{ } { }
{ } { }
{ } { }
} {}{}{.} Nun wenden wir erneut den Mittelwertsatz auf die differenzierbare Abbildung
\mathdisp {\tau \longmapsto { \left( D_{u} \varphi \right) } { \left( P+s_1 u + \tau v \right) }} { }
an, und erhalten die Existenz eines
\mavergleichskette
{\vergleichskette
{ t_1 }
{ \in }{ {]0,t[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ { \left( D_{u} \varphi \right) } { \left( P+s_1 u + t v \right) }- { \left( D_{u} \varphi \right) } { \left( P+s_1 u \right) } }
{ =} { t \cdot { \left( D_{v} D_{ u}\varphi \right) } { \left( P+s_1u+t_1v \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zusammen erhalten wir
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ \varphi(P + su + tv) - \varphi(P + su) - \varphi(P+tv)+\varphi(P) }
{ =} {st \cdot { \left( D_{v} D_{ u}\varphi \right) } { \left( P+s_1u+t_1v \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Wenden wir denselben Trick in umgekehrter Reihenfolge an, so erhalten wir \mathkor {} {s_2} {und} {t_2} {,} so dass dieser Ausdruck auch gleich
\mathdisp {st \cdot { \left( D_{u} D_{ v}\varphi \right) } { \left( P+s_2 u+t_2 v \right) }} { }
ist. Somit schließen wir für \zusatzklammer {hinreichend kleine} {} {} gegebene
\mavergleichskette
{\vergleichskette
{ s,t }
{ > }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} dass positive
\mavergleichskette
{\vergleichskette
{ s_1,s_2 }
{ \leq }{ s }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ t_1,t_2 }
{ \leq }{ t }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} existieren mit
\mavergleichskettedisp
{\vergleichskette
{ { \left( D_{v} D_{ u}\varphi \right) } { \left( P+s_1u+t_1v \right) } }
{ =} { { \left( D_{u} D_{ v}\varphi \right) } { \left( P+s_2u+t_2v \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Für
\mathl{s \rightarrow 0}{} und
\mathl{t \rightarrow 0}{} konvergieren auch
\mathl{s_1, s_2,t_1}{} und $t_2$ gegen $0$. Die Stetigkeit der beiden zweiten Richtungsableitungen impliziert für
\mathl{s,t \rightarrow 0}{} die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ { \left( D_{v} D_{ u}\varphi \right) } { \left( P \right) } }
{ =} { { \left( D_{u} D_{ v}\varphi \right) } { \left( P \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}