Lineare surjektive Abbildung/Linearer Schnitt/Als affin-linearer Raum/Aufgabe/Lösung

Aus Wikiversity


a) Es gebe eine lineare Abbildung mit der angegebenen Eigenschaft . Dann ist für jedes

also ist ein Urbild für unter .

Es sei eine Basis von und es seien Urbilder unter , also Elemente in mit

Wir definieren nun eine lineare Abbildung durch

Da man eine lineare Abbildung auf einer Basis frei vorgeben kann, ist dadurch in der Tat eine lineare Abbildung definiert.

Für die Verknüpfung und einen beliebigen Vektor gilt

Also ist diese Verknüpfung die Identität.

b) Wir definieren eine Abbildung durch

wobei die Addition von linearen Abbildungen von nach ist. Unter dieser Abbildung geht die Nullabbildung auf . Wir müssen zuerst zeigen, dass zu gehört. Dies folgt aus

für alle .

Zur Injektivität. Seien und aus gegeben, die auf das gleiche Element in abgebildet werden. Dann ist

und daher

Zur Surjektivität. Es sei . Wir betrachten und behaupten, dass dies zu gehört. Dies folgt aus

Damit ist im Bild der Abbildung.