Matrix/3x3/Eigenräume/R/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen
  1. Das charakteristische Polynom ist
  2. Die Nullstellenbestimmung von führt auf

    das charakteristische Polynom hat also die Faktorzerlegung

    Die Eigenwerte sind also , jeweils mit algebraischer und geometrischer Vielfachheit .

  3. Der Eigenraum zum Eigenwert ist . Der Eigenraum zum Eigenwert ist der Kern von , dieser ist . Der Eigenraum zum Eigenwert ist der Kern von , dieser ist .