Matrix/Nilpotent/Typische Gestalt/Beispiel

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es sei eine obere Dreiecksmatrix, bei der alle Diagonalelemente seien. hat also die Gestalt

Dann ist nilpotent, und zwar bewegt sich mit jedem Potenzieren die -Hauptdiagonale nach rechts oben. Wenn man nämlich beispielsweise das Produkt für die -te Zeile und die -te Spalte mit

ausrechnet, so kommt in den Teilprodukten stets eine vor und das Ergebnis ist .