a) Wir beschreiben zuerst als Kern einer Linearform. Das lineare Gleichungssystem
-
-
führt auf
()
-
Daher ist eine Lösung und ist der Kern der durch gegebenen Linearform auf . Die Bedingung, dass eine -Matrix den Untervektorraum nach abbildet, bedeutet also, dass
-
für
ist, was auf der gegebenen Basis von überprüft werden kann. Wenn man
-
ansetzt, so müssen die beiden Bedingungen
-
und
-
erfüllt sein. Die erste Bedingung bedeutet
und die zweite Bedingung bedeutet
b) Wir eliminieren, indem wir, bezogen auf die beiden zuletzt formulierten Bedingungen, die Linearkombination 2I-3II berechnen. Dies ergibt
-
ein beschreibendes eliminiertes lineares Gleichungssystem ist also durch
-
und
-
gegeben.
c) Da die beiden Gleichungen linear unabhängig sind, besitzt der Lösungsraum die Dimension
.