Zum Inhalt springen

Menge/Relation/Eigenschaften/Einführung/Textabschnitt

Aus Wikiversity


Eine Relation auf einer Menge ist eine Teilmenge der Produktmenge , also .

Wenn ein Paar zu gehört, so sagt man auch, dass und in der Relation stehen. Statt verwendet man häufig suggestivere Schreibweisen wie oder . Dabei werden manche Symbole nur verwendet, wenn die Relation gewisse zusätzliche Eigenschaften erfüllt. Die wichtigsten Eigenschaften fasst die folgende Definition zusammen (die bei zwei verschiedenen Mengen keinen Sinn ergeben).


Es sei eine Menge und eine Relation auf . Man nennt

    • reflexiv, wenn

    gilt für alle .

    • transitiv, wenn für beliebige

    aus und aus stets folgt.

    • symmetrisch, wenn für beliebige

    aus auch folgt.

    • antisymmetrisch, wenn für beliebige

    aus und die Gleichheit folgt.

    Ein Pfeildiagramm ist eine Möglichkeit, eine Relation darzustellen.

    Eine wichtige Darstellungsmöglichkeit für eine Relation auf einer Menge ist durch ein Pfeildiagramm gegeben, man spricht auch von einem gerichteten Graphen. Dabei werden die Elemente der Grundmenge als Punkte (Knoten) gezeichnet, und es wird genau dann ein Pfeil von Punkt zu Punkt gezeichnet, wenn gilt. Die Richtung des Pfeiles ist dabei wichtig. Wenn allerdings die Relation symmetrisch ist, so gibt es zu jedem Pfeil den entsprechenden Rückpfeil. Daher drückt man symmetrische Relationen direkt durch ungerichtete Pfeile (Kanten, Verbindungsstrecken) aus und spricht von ungerichteten Graphen.


    Eine (Fußball-)Spielgruppe bei einer Europa- oder Weltmeisterschaft besteht aus vier Mannschaften, und jede spielt gegen jede. Ein Spiel kann unentschieden oder mit einem Sieg für eine der beiden Mannschaften enden. Wir interessieren uns für die Gewinnrelation in einer Spielgruppe, die man durch einen gerichteten Graphen beschreiben kann, wobei man einen Sieg von über durch einen Pfeil von nach (und ein Unentschieden durch keine Verbindung) ausdrücken kann.