Metrische Räume/Stetige Abbildung/Charakterisierung in einem Punkt/Fakt/Beweis/Aufgabe/Lösung

Aus Wikiversity


Die Äquivalenz von (1) und (2) ist klar.
Es sei nun (2) erfüllt und sei eine Folge in , die gegen konvergiert. Wir müssen zeigen, dass ist. Dazu sei gegeben. Wegen (2) gibt es ein mit der angegebenen Eigenschaft und wegen der Konvergenz von gegen gibt es eine natürliche Zahl derart, dass für alle die Abschätzung

gilt. Nach der Wahl von ist dann

so dass die Bildfolge gegen konvergiert.

Es sei (3) erfüllt und vorgegeben.  Wir nehmen an, dass es für alle Elemente gibt, deren Abstand zu maximal gleich ist, deren Wert unter der Abbildung aber zu einen Abstand größer als besitzt. Dies gilt dann insbesondere für die Stammbrüche , . D.h. für jede natürliche Zahl gibt es ein mit

Diese so konstruierte Folge konvergiert gegen , aber die Bildfolge konvergiert nicht gegen , da der Abstand der Bildfolgenwerte zu zumindest ist. Dies ist ein Widerspruch zu (3).