Zum Inhalt springen

Monoid/Gruppe/Einführung/Textabschnitt

Aus Wikiversity


Eine Verknüpfung auf einer Menge ist eine Abbildung

Statt schreibt man oder (je nach Kontext) oder oder einfach .


Ein Monoid ist eine Menge zusammen mit einer Verknüpfung

und einem ausgezeichneten Element derart, dass folgende beiden Bedingungen erfüllt sind.

  1. Die Verknüpfung ist assoziativ, d.h. es gilt

    für alle .

  2. ist neutrales Element der Verknüpfung, d.h. es gilt

    für alle .

In einem Monoid ist das neutrale Element eindeutig bestimmt. Wenn es nämlich zwei Elemente und gibt mit der neutralen Eigenschaft, so folgt sofort


Ein Monoid heißt Gruppe, wenn jedes Element ein inverses Element besitzt, d.h. wenn es zu jedem ein mit gibt.

Die Menge aller Abbildungen auf einer Menge in sich selbst ist mit der Hintereinanderschaltung ein Monoid; die nicht bijektiven Abbildungen sind aber nicht umkehrbar, so dass sie kein Inverses besitzen und daher keine Gruppe vorliegt. Die Menge der bijektiven Selbstabbildungen einer Menge und die Menge der Bewegungen eines geometrischen Objektes sind hingegen eine Gruppe. In einer Gruppe ist das inverse Element zu einem Element eindeutig bestimmt. Wenn nämlich und die Eigenschaft besitzen, zu invers zu sein, so gilt

Daher schreibt man das zu einem Gruppenelement eindeutig bestimmte inverse Element als


Eine Gruppe heißt kommutativ (oder abelsch), wenn die Verknüpfung kommutativ ist, wenn also für alle gilt.

Aus der Grundvorlesung sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven Zahlbereiche, also

wobei jeweils das Inverse durch das Negative einer Zahl gegeben ist. Diese Zahlbereiche haben allerdings über die additive Gruppenstruktur hinaus noch mehr Struktur, nämlich die Multiplikation, die mit der Addition durch die Distributivgesetze verbunden sind. Dies wird später mit dem Begriff des „Ringes“ bzw. des „Körpers“ präzisiert. Bei gilt ferner, dass man durch jede von null verschiedene Zahl „dividieren darf“. Dies ist gleichbedeutend damit, dass multiplikative Gruppen

vorliegen. Diese werden meistens mit bezeichnet. Innerhalb der ganzen Zahlen darf man nur durch und dividieren, und in der Tat ist die Menge mit der Multiplikation eine Gruppe. Und wenn wir schon bei kleinen Gruppen sind: Es gibt im wesentlichen genau eine Gruppe mit nur einem Element, die man die triviale Gruppe nennt.

Ferner ist der Begriff des Vektorraums bekannt, also beispielsweise der mit komponentenweiser Addition. Das neutrale Element ist der Nullvektor , und das Inverse ist wieder das Negative eines Vektors, das wiederum komponentenweise gegeben ist. Diese Gruppen sind alle kommutativ.

Die Drehungen in der Ebene an einem regelmäßigen -Eck bilden wiederum eine kommutative Gruppe, die aus Elementen besteht (siehe unten). Die Menge aller ebenen Drehungen zu einem beliebigen Winkel , , ist ebenfalls eine Gruppe, die sogenannte Kreisgruppe. Sie ist die Symmetriegruppe des Kreises.