Monoidring/Normal/Differentialoperatoren/Direkter Summand/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Ein normales torisches positives Monoid besitzt die Form

mit einem positiven rationalen polyhedrischen Kegel und dem Gitter . Es sei die Dimension von und seien die Facetten von . Zu jeder Facette gibt es eine integrale Linearform

deren Kern ist, die im Innern des Kegels positiv ist und die surjektiv ist. Diese Linearformen liefern auf dem Monoidring die Bewertungen, die zu den torischen Primidealen der Höhe , die den Facetten entsprechen, gehören. Diese Linearformen definieren zusammengenommen eine Abbildung

die wiederum einen Ringhomomorphismus

ergibt. Dieser ist ein direkter Summand, und zwar ist der Ring der nullten Stufe des Polynomrings unter der Graduierung, die zu gehört. Man hat also insbesondere eine Zerlegung

mit

Die Projektion auf die -te Komponente nennen wir .

Über die Abbildung erhält man gemäß Fakt aus den zusammengesetzten partiellen Ableitungen (bzw. ) auf dem Polynomring Differentialoperatoren auf . Insbesondere erhält man für jedes Monom einen „zugehörigen“ kanonischen Differentialoperator durch

Die Wirkungsweise von ist (zu , man könnte auch schreiben)

Dies beruht auf

wobei die erste Alternative genau dann gilt, wenn in jeder Komponente gilt, was zu äquivalent ist. Die Ordnung des Differentialoperators ist . Es ist

Insbesondere gibt es also zu jedem Monom in einen unitären Operator, der dieses Monom auf abbildet. Dies überträgt sich (in Charakteristik unmittelbar) auf beliebige Elemente eines torischen Monoidringes. Allerdings ist, im Gegensatz zum Polynomring, die Ordnung der zu einem Monom gehörigen unitären Differentialoperatoren komplizierter, nämlich über , zu bestimmen.