Numerische Halbgruppen/Teilerfremde Erzeuger/Ab n alles/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Wegen der Teilerfremdheit gibt es natürlich eine Darstellung

mit ganzzahligen Koeffizienten . Wir werden sie schrittweise auf die gewünschte Gestalt bringen. Wir schreiben mit (Division mit Rest). Dies setzt man in die Gleichung für ein und schlägt den Term zu dazu. Ebenso bringt man den (neuen) zweiten Koeffizienten auf die gewünschte Form, in dem man ihn mit dem dritten Erzeuger verarbeitet. So kann man alle ersten Koeffizienten auf die gewünschte Gestalt bringen.

Es sei die Darstellung nun in der gewünschten Form. Dann ist die Summe der ersten Summanden beschränkt. Wenn größer als diese Schranke ist, so muss der letzte Summand und damit auch der letzte Koeffizient nichtnegativ sein.