Papierformat/Halbierung/Abbildungseigenschaften/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen
  1. Es ist lediglich zu zeigen, dass die Werte der Funktion wieder sind. Bei

    ist

    und damit

    bei

    ist ebenfalls

  2. Bei lautet die Bedingung für einen Fixpunkt , was in diesem Abschnitt zur einzigen Lösung führt. Im anderen Bereich gibt es keine Lösung.
  3. Für zwischen und ist auch

    und damit ist in diesem Bereich

    diese Zahlen sind somit allesamt Fixpunkte der Hintereinanderschaltung. Bei mit

    ist

    und somit

    in diesem Bereich besitzt die Hintereinanderschaltung also keinen Fixpunkt. Bei

    ist

    und es gibt keinen Fixpunkt.

  4. Auf den beiden Abschnitten handelt es sich um rationale Funktionen, die stetig sind, und bei haben beide Ausdrücke den Wert .
  5. Zu einem Blatt Papier sei das Verhältnis der längeren Seite zur kürzeren (eventuell gleichlangen) Seite mit bezeichnet. Es liegt also das Verhältnis zu vor. Wenn das Blatt an der langen Seite halbiert wird, so sid die neuen Seitenlängen und . Wenn

    ist, was genau bei

    der Fall ist, so ist das Verhältnis lange Seite zu kurzer Seite des halbierten Blattes gleich .