Parabel/Tangente/Flächeninhalt/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen
  1. Die Ableitung im Punkt ist . Dies ist die Steigung der Tangente , die durch den Punkt verläuft. Für die Tangentengleichung gilt

    und aus

    folgt

  2. Der Ansatz

    führt auf

    wobei bei die gesamte -Achse die Tangente ist.

  3. Aus Symmetriegründen sei . Der Flächeninhalt der in Frage stehenden Fläche ergibt sich, wenn man vom Flächeninhalt unterhalb des Graphen zwischen und den Flächeninhalt des Dreiecks mit den Ecken abzieht. Es ist

    und der Flächeninhalt des Dreiecks ist

    Der gefragte Flächeninhalt ist also gleich

    Für beliebiges (auch negatives) ist die Antwort .