Polynom/x^3+x-1/Nullstelle zwischen 0 und 1/Berechnung/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

a) Es ist und , daher besitzt die stetige Funktion aufgrund des Zwischenwertsatzes mindestens eine Nullstelle in . Die Ableitung ist und dies ist in diesem Intervall positiv, so dass die Funktion dort streng wachsend ist. Also kann sie nicht mehr als eine Nullstelle besitzen.

b) Für ist
die Nullstelle muss also in der rechten Intervallhälfte liegen. Für ergibt sich

so dass dieser Wert zu groß ist. Für ergibt sich

was immer noch zu groß ist. Für ergibt sich

Die Nullstelle liegt also im offenen Intervall zwischen und und die erste Nachkommastelle ist .

c) Wie unter b) berechnet ist , so dass man nehmen kann.
Zur gelösten Aufgabe