Zum Inhalt springen

Polynom/x^3+x-1/Nullstelle zwischen 0 und 1/Berechnung/Aufgabe/Lösung

Aus Wikiversity


a) Es ist und , daher besitzt die stetige Funktion aufgrund des Zwischenwertsatzes mindestens eine Nullstelle in . Die Ableitung ist und dies ist in diesem Intervall positiv, sodass die Funktion dort streng wachsend ist. Also kann sie nicht mehr als eine Nullstelle besitzen.

b) Für

ist

die Nullstelle muss also in der rechten Intervallhälfte liegen. Für ergibt sich

sodass dieser Wert zu groß ist. Für ergibt sich

was immer noch zu groß ist. Für ergibt sich

Die Nullstelle liegt also im offenen Intervall zwischen und und die erste Nachkommastelle ist .

c) Wie unter b) berechnet ist , sodass man

nehmen kann.