Wir beweisen die Existenzaussage durch Induktion über den
Grad
von
. Wenn der Grad von
größer als der Grad von
ist, so ist
und
eine Lösung, so dass wir dies nicht weiter betrachten müssen. Bei
ist nach der Vorbemerkung auch
,
also ist
ein konstantes Polynom, und damit ist
(da
und
ein Körper ist)
und
eine Lösung. Sei nun
und die Aussage für kleineren Grad schon bewiesen. Wir schreiben
und
mit
. Dann gilt mit
die Beziehung

Dieses Polynom
hat einen Grad kleiner als
und darauf können wir die Induktionsvoraussetzung anwenden, d.h. es gibt
und
mit
-
Daraus ergibt sich insgesamt
-

so dass also
und
eine Lösung ist.
Zur Eindeutigkeit sei
mit den angegebenen Bedingungen. Dann ist
.
Da die Differenz
einen Grad kleiner als
besitzt, ist aufgrund der Gradeigenschaften diese Gleichung nur bei
und
lösbar.