Produktmenge/Endlich/Produkt-Prämaß/Wohldefiniertheit/Eigenschaften/Teil 2/Fakt/Beweis

Aus Wikiversity
Beweis

Es sei eine abzählbare disjunkte Vereinigung, wobei und die endliche disjunkte Vereinigungen von Quadern sind. Wir müssen zeigen. Dies kann man direkt auf den Fall zurückführen, wo und Quader sind. Zu einer Teilmenge

und zu betrachten wir

Wenn zum Produkt-Präring gehört, also eine endliche disjunkte Vereinigung von Quadern ist, so gehören diese Mengen zu , da sie eine endliche Vereinigung gewisser (-)Seiten dieser Quader sind. Zu einer positiven reellen Zahl kann man die Menge

betrachten. Dies Menge ist wiederum eine endliche Vereinigung von (-)Seiten der beteiligten Quader und gehört somit zu . Weiterhin kann nur für endlich viele Werte sein, nämlich nur für die Teilsummen der Werte des Prämaßes der (-)Seiten der beteiligten Quader. Mit diesen Notationen gilt

da dies für jeden Quader gilt und daraus durch Aufsummieren folgt.
Sei also nun eine abzählbare Zerlegung in Quader. Wir müssen

zeigen. Nach Übergang zu den Komplementen in ist dies äquivalent damit, dass

ist für . Es ist , und damit ist auch für jedes . Nach Fakt ist daher . Zu definieren wir

Da für jedes die Folge gegen konvergiert, schrumpft die Mengenfolge für jedes gegen . Daraus folgt, wieder mit Fakt, dass .
Seien nun gegeben. Zu gibt es ein mit

für alle . Für diese hat man dann insgesamt die Abschätzung

Da nach Voraussetzung und endlich sind, kann man den letzten Term durch geeignete Wahl von und beliebig klein machen. Daher konvergiert gegen .

[[Kategorie:Produktmenge/Endlich/Produkt-Prämaß/Wohldefiniertheit/Eigenschaften/Teil 2/Fakt/Beweise]] [[Kategorie:Produktmenge/Endlich/Produkt-Prämaß/Wohldefiniertheit/Eigenschaften/Teil 2/Fakt/Beweise]] [[Kategorie:Produktmenge/Endlich/Produkt-Prämaß/Wohldefiniertheit/Eigenschaften/Teil 2/Fakt/Beweise]]