Rationale Zahlen/Brüche/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Definition  

Unter einer rationalen Zahl versteht man einen Ausdruck der Form

wobei und sind, und wobei zwei Ausdrücke und genau dann als gleich betrachtet werden, wenn (in ) gilt. Die Menge aller rationalen Zahlen wird mit bezeichnet.

Einen Ausdruck nennt man Bruch, wobei der Zähler und der Nenner des Bruches heißt. Eine rationale Zahl wird durch verschiedene Brüche beschrieben, beispielsweise ist . Man sagt auch, dass diese beiden Brüche gleichwertig sind. Für die rationale Zahl schreibt man einfach . In diesem Sinne sind ganze Zahlen insbesondere auch rationale Zahlen. Es gelten die folgenden Identitäten (dabei seien , ansonsten seien alle beliebig).

Die Addition und die Multiplikation auf rationalen Zahlen wird folgendermaßen festgelegt.

Man addiert also zwei rationale Zahlen, indem man die Nenner gleichnamig macht. Diese Operationen sind wohldefiniert und wieder assoziativ, kommutativ und es gilt das Distributivgesetz. Diese Eigenschaften kann man auf die entsprechenden Eigenschaften der ganzen Zahlen zurückführen, siehe Aufgabe.

Die hat wieder die Eigenschaft

und die hat wieder die Eigenschaft

Ferner gibt es wieder zu einer rationalen Zahl die negative Zahl

Sie besitzt die charakteristische Eigenschaft

Zu einer rationalen Zahl mit (also wenn Zähler und Nenner von verschieden sind) ist auch der umgedrehte Bruch eine rationale Zahl, und es gilt

Man nennt die inverse rationale Zahl zu .

Man kann die rationalen Zahlen auf der Zahlengeraden platzieren (die ganzen Zahlen seien dort schon platziert). Die rationale Zahl mit findet man so: Man unterteilt die Strecke von nach in gleichlange Teilstrecken. Die Zahl ist dann die rechte Grenze des (von links) ersten Teilintervalls. Insbesondere ist die Länge des Intervalls, dass -fach nebeneinander gelegt die Einheitsstrecke (oder das Einheitsintervall) ergibt.[1]

Als Punkte auf der Zahlengeraden lassen sich rationale Zahlen ihrer Größe nach vergleichen. Dabei gilt für und mit und die Beziehung

genau dann, wenn in die Beziehung

gilt. Um dies von der Zahlengerade her einzusehen, bringt man die beiden rationalen Zahlen auf den Hauptnenner, d.h. man vergleicht und . Die Größerbeziehung hängt dann, wegen positiv, allein von den beiden Zählern ab.

Fußnoten
  1. Die Frage, wie man diese Unterteilung elementar durchführt, besprechen wir hier nicht.