Zum Inhalt springen

Reelle Zahlen/Beschränkte Teilmenge hat Supremum/Fakt/Beweis/Aufgabe/Lösung

Aus Wikiversity


Es sei eine nichtleere, nach oben beschränkte Teilmenge. Es sei und eine obere Schranke für , d.h. es ist für alle . Wir konstruieren zwei Folgen und , wobei wachsend, fallend ist und jedes eine obere Schranke von ist (sodass insbesondere für alle ist), und so, dass eine Cauchy-Folge ist. Dabei gehen wir induktiv vor, d.h. die beiden Folgen seien bis bereits definiert und erfüllen die gewünschten Eigenschaften. Wir setzen

und

Dieses Punktepaar erfüllt die gewünschten Eigenschaften, und es ist

da in beiden Fällen der Abstand zumindest halbiert wird. Da die Folge wachsend und nach oben beschränkt ist, konvergiert sie nach Fakt gegen einen Grenzwert, sagen wir . Ebenso ist die fallende Folge nach unten beschränkt und konvergiert gegen denselben Grenzwert .  Wir behaupten, dass dieses das Supremum von ist. Wir zeigen zuerst, dass eine obere Schranke von ist.  Sei dazu für ein angenommen. Da die Folge gegen konvergiert, gibt es insbesondere ein mit

im Widerspruch dazu, dass jedes eine obere Schranke von ist.
 Für die Supremumseigenschaft müssen wir zeigen, dass kleinergleich jeder oberen Schranke von ist. Sei dazu eine obere Schranke von und  nehmen wir an, dass ist. Da gegen konvergiert, gibt es wieder ein mit

im Widerspruch dazu, dass eine obere Schranke ist. Also liegt wirklich das Supremum vor.