Reguläre Punkte/Stetig differenzierbar/Offen/Aufgabe/Lösung
Zur Navigation springen
Zur Suche springen
Es seien die Koordinatenfunktionen zu und sei
die Jacobi-Matrix zu . Die Abbildung ist in einem Punkt genau dann regulär, wenn die Jacobi-Matrix bijektiv ist, und dies ist genau dann der Fall, wenn ihre Determinante ungleich ist. Nach Voraussetzung sind die Einträge in der Matrix stetige Funktionen. Da die Determinante eine polynomiale Funktion ist, ist die Gesamtabbildung