Zum Inhalt springen

Riemannsche Fläche/Invertierbare Garbe/Untergarbe/Divisor/Aufgabe/Lösung

Aus Wikiversity


Es sei eine invertierbare Untergarbe der Garbe der meromorphen Funktionen. Es sei eine offene Überdeckung mit zusammenhängend und lokalen Trivialisierungen

Dabei wird auf ein Element abgebildet, das die Abbildung festlegt. Dabei gilt

d.h. wird als Untermodul von der meromorphen Funktion erzeugt. Es sei

der Hauptdivisor zu auf . Auf gilt . Es ist noch zu zeigen, dass die Divisoren zusammen einen Divisor auf ganz definieren. Dazu müssen wir zeigen, dass zu die Einschränkungen von und von auf übereinstimmen. Nach Konstruktion der erzeugen sowohl als auch den Untermodul erzeugen. Daher ist

mit einer holomorphen Einheit auf . Daher stimmen die Hauptdivisoren und

auf überein.