Stammfunktion/Rationale Funktion in x und quadratischem Polynom/Reduktion/Fakt

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es sei eine rationale Funktion in und in (mit und so, dass auch positive Werte annimmt), schreiben kann, d.h. es gebe Polynome in zwei Variablen, , , derart, dass

gilt.

Dann kann man durch eine Substitution der Form

(), die Berechnung von auf ein Integral der Form

  1. ,
  2. ,
  3. ,

zurückführen, wobei wieder eine rationale Funktion in zwei Variablen ist.

In diesen drei Fällen führen die Substitutionen

  1. ,
  2. ,
  3. ,

auf das Integral über eine rationale Funktion in trigonometrischen Funktionen bzw. in Hyperbelfunktionen

Zum Beweis, Alternativen Beweis erstellen