Vektorfeld/Zugehörige Derivation/Invariante Funktion und Kern/Aufgabe

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es sei ein endlichdimensionaler reeller Vektorraum und

ein stetig differenzierbares Vektorfeld. Es sei die Menge der unendlich oft stetig differenzierbaren Funktionen von nach . Wir betrachten die Abbildung

mit

Man erhält also aus der Funktion die neue Funktion , indem man an einem Punkt die Richtungsableitung der Funktion in Richtung berechnet. Zeige, dass für folgende Eigenschaften äquivalent sind.

  1. Es ist .
  2. Das Bild einer jeden Lösung zur Differentialgleichung liegt in einer Faser von .