Zum Inhalt springen

Vektorraum/Ein Axiom fehlt/Distributivität im Vektorraum/Beispiel/Aufgabe/Lösung

Aus Wikiversity


Wir betrachten den Körper und die additive Gruppe . Als „Skalarmultiplikation“

betrachten wir die durch

gegebene Abbildung, wobei die komplexe Konjugation von bezeichnet (wir schreiben um zu betonen, dass es sich um eine untypische Operation handelt).

Zum Nachweis der Assoziativität der Multiplikation sei und . Bei

ist

wobei die mittlere Gleichung sowohl bei als auch bei gilt. Bei

ist

Zum Nachweis der Distributivität in den Skalaren ist bei

und bei

ist


Es sei nun

und

Dann ist

und somit ist einerseits

und andererseits

Somit ist diese Multiplikation nicht distributiv in den Vektoren.

Ferner ist wegen

stets