Vollständiger Graph/Charakteristisches Polynom/Eigenräume/Beispiel

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Das charakteristische Polynom zur Adjazenzmatrix des vollständigen Graphen ist nach Definition die Determinante von

In diesem Fall ist es einfacher, direkt die Eigenräume zu berechnen. Für steht hier überall und der Kern besitzt die Basis

Somit ist ein Eigenwert mit geometrischer Vielfachheit . Für ergibt sich die Matrix

und der Kern davon ist

Somit ist ein Eigenwert mit geometrischer Vielfachheit . Da die Summe der geometrischen Vielfachheiten bereits die Dimension ist, handelt es sich jeweils auch um die algebraischen Vielfachheiten und das charakteristische Polynom ist