# Würfeldrehungen/Wirkungsweise verschiedener Bewegungen auf Raumdiagonalen/Aufgabe/Lösung

Zur Navigation springen Zur Suche springen

Die in Frage stehende Abbildung sei mit ${\displaystyle {}\varphi }$ bezeichnet.

(1)

 ${\displaystyle {}g}$ ${\displaystyle {}\alpha }$ ${\displaystyle {}\beta }$ ${\displaystyle {}\gamma }$ ${\displaystyle {}\delta }$ ${\displaystyle {}\varphi (g)}$ ${\displaystyle {}\gamma }$ ${\displaystyle {}\delta }$ ${\displaystyle {}\alpha }$ ${\displaystyle {}\beta }$

(2)

 ${\displaystyle {}g}$ ${\displaystyle {}\alpha }$ ${\displaystyle {}\beta }$ ${\displaystyle {}\gamma }$ ${\displaystyle {}\delta }$ ${\displaystyle {}\varphi (g)}$ ${\displaystyle {}\beta }$ ${\displaystyle {}\gamma }$ ${\displaystyle {}\delta }$ ${\displaystyle {}\alpha }$

(3)

 ${\displaystyle {}g}$ ${\displaystyle {}\alpha }$ ${\displaystyle {}\beta }$ ${\displaystyle {}\gamma }$ ${\displaystyle {}\delta }$ ${\displaystyle {}\varphi (g)}$ ${\displaystyle {}\gamma }$ ${\displaystyle {}\beta }$ ${\displaystyle {}\alpha }$ ${\displaystyle {}\delta }$

(4)

 ${\displaystyle {}g}$ ${\displaystyle {}\alpha }$ ${\displaystyle {}\beta }$ ${\displaystyle {}\gamma }$ ${\displaystyle {}\delta }$ ${\displaystyle {}\varphi (g)}$ ${\displaystyle {}\alpha }$ ${\displaystyle {}\delta }$ ${\displaystyle {}\beta }$ ${\displaystyle {}\gamma }$

Es gibt eine solche Würfelbewegung: Die Halbdrehung um die Kantenmittelpunktsachse

zur Kante ${\displaystyle {}C,D}$ hat diese Eigenschaft.
Zur gelösten Aufgabe