Zahlbereich/X^3-3X+1/Modulo p/Körper/p-te Potenz/Möglichkeiten/Frobenius/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Wir betrachten das Polynom im Polynomring . Die Restklasse von ist eine Nullstelle von , und nach Aufgabe sind auch und Nullstellen. Die Faktorzerlegung

gilt auch in und damit auch in jedem Restklassenring. Sei nun ein Restklassenkörper von . Da eine Nullstelle von ist und der Körper die Charakteristik besitzt, gilt

d.h. auch ist eine Nullstelle von . Somit muss mit einer der drei Nullstellen übereinstimmen.

Die Aussage gilt bei

ebenfalls, modulo fallen allerdings die drei Nullstellen zusammen.