Zentralfeld/Kreisbewegung/Zeitunabhängig/Gradientenfeld/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

a) Der stetig differenzierbare Weg sei durch

gegeben mit

für alle . Es seien die Komponenten bezüglich einer Orthonormalbasis von . Dann ist

konstant und daher gilt für die Ableitung

also ist

Damit ist auch

und daher ist das Wegintegral längs gleich , da es das Integral über diese Funktion ist.

b) Wenn ein Gradientenfeld ist, so gibt es ein Potential

also eine differenzierbare Funktion mit

Für zwei Punkte , die vom Nullpunkt den gleichen Abstand

haben, gibt es nach Aufgabe eine stetig differenzierbare Kurve

mit und , die zum Nullpunkt konstant den Abstand besitzt. Mit einem solchen Weg erhält man

nach Teil a), so dass der Wert von nur von abhängt. Daher ist

mit einer gewissen Funktion

Diese ist stetig, da für einen Orthonormalvektor die Beziehung

gilt und stetig ist. Für den Gradienten von ist

Wenn umgekehrt

ist mit stetig, so sei eine Stammfunktion zu . Wir behaupten, dass

ein Potential zum Vektorfeld ist.