Zirkel und Lineal/Wichtige Konstruktionen/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis
Wir verwenden im Beweis einige elementargeometrische Grundtatsachen. 
  1. Wir zeichnen die beiden Kreise und mit dem Mittelpunkt durch und umgekehrt. Die beiden Schnittpunkte von und seien und . Deren Verbindungsgerade steht senkrecht auf und halbiert die Strecke zwischen und .
  2. Man zeichnet einen Kreis mit als Mittelpunkt und einem beliebigen Radius (dazu braucht man neben noch einen weiteren Punkt). Es seien und die beiden Schnittpunkte der Gerade mit . Für diese beiden Punkte führen wir die in (1) beschriebene Konstruktion durch. Diese Halbierungsgerade läuft dann durch und steht senkrecht auf .
  3. Wenn auf der Geraden liegt, sind wir schon fertig mit der Konstruktion in (2). Andernfalls zeichnen wir einen Kreis mit als Mittelpunkt mit einem hinreichend großen Radius derart, dass sich zwei Schnittpunkte und mit der Geraden ergeben (dafür braucht man, dass mindestens ein weiterer Punkt zur Verfügung steht). Dann führt wieder die erste Konstruktion zum Ziel.
  4. Dafür führt man zuerst die Konstruktion der Senkrechten durch wie in (3) beschrieben durch. Mit und führt man dann die Konstruktion (2) durch.