Zwei Mengen/Mächtigkeitsbeziehung/Injektiv und Surjektiv/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

. Wenn leer ist, so kann man die leere Abbildung nehmen. Sei also und sei

surjektiv. Zu jedem gibt es ein mit . Wir wählen für jedes ein solches aus und definieren durch

Wegen ist injektiv.

. Sei nun eine injektive Abbildung

gegeben. Diese induziert eine Bijektion zwischen und dem Bild von , sei diese Abbildung. Wenn leer ist, so sind wir fertig. Sei also und sei ein fixiertes Element. Wir definieren

durch

Diese Abbildung ist wegen surjektiv.

Zur bewiesenen Aussage