Abbildung/Bijektiv und Existenz von links und rechts Inversem/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

(1) (2). Es sei also bijektiv und wir müssen eine Abbildung mit den angegebenen Eigenschaften finden. Wir behaupten, dass die Umkehrabbildung diese Eigenschaften erfüllt. Für jedes ist . Das Element wird auf abgebildet und es ist das einzige Element aus mit dieser Eigenschaft. Daher ist nach Definition der Umkehrabbildung . Also ist .

Für jedes ist . Nach der Definition von ist dasjenige Element aus , dass von auf abgebildet wird. Also ist und damit ist .

(2) (3) ist trivial, da das aus (2) sowohl die Eigenschaft von aus (3) als auch die Eigenschaft von aus (3) erfüllt.

(3) (1). Es gebe nun die Abbildungen und mit den beschriebenen Eigenschaften. Wir möchten zeigen, dass dann bijektiv ist, also sowohl injektiv als auch surjektiv ist. Zum Nachweis der Injektivität seien

Wir wenden darauf die Abbildung an und erhalten

Da ist, folgt direkt .

Zum Nachweis der Surjektivität sei beliebig vorgegeben. Wir behaupten, dass durch auf abgebildet wird. Dies folgt direkt aus

Zur bewiesenen Aussage