Zum Inhalt springen

Affine Ebene/Rationale Abbildung/Bild ist algebraisch/Fakt/Beweis

Aus Wikiversity
Beweis

Wir können durch Übergang zu einem Hauptnenner annehmen, dass die rationale Abbildung durch

mit , gegeben ist. Es seien die Homogenisierungen von diesen Polynomen mit der neuen Variablen und es sei der größte Grad dieser Polynome. Wir setzen . Die haben dann alle den Grad und ihre Dehomogenisierungen () sind nach wie vor . Nach Fakt gibt es ein homogenes Polynom , , vom Grad (bezüglich ) mit

Wir betrachten

welches ein Polynom in den beiden rationalen Funktionen ist. Für diesen Übergang ist es wichtig, dass homogen ist. Einsetzen der homogenen Polynome in diese Gleichung ergibt

Dies ist eine Gleichheit im Quotientenkörper von . Wenn man darin setzt (also dehomogenisiert), so erhält man

also eine Gleichung für die ursprünglichen rationalen Funktionen.