Zum Inhalt springen

Basiswechsel/Übergangsmatrix/Gemischtes/Bemerkung

Aus Wikiversity

In der -ten Spalte der Transformationsmatrix stehen die Koordinaten von bezüglich der Basis . Der Vektor hat bezüglich der Basis die Koordinaten , und wenn man die Matrix auf anwendet, erhält man die -te Spalte der Matrix, und diese ist eben das Koordinatentupel von in der Basis . Bei einem eindimensionalen Raum mit

ist , wobei der Bruch in der Tat wohldefiniert ist und wodurch man sich die Reihenfolge der Basen in dieser Schreibweise merken kann. Eine weitere Beziehung ist

wobei hier die Matrix aber nicht auf ein -Tupel aus , sondern auf ein -Tupel aus angewendet wird und sich ein neues -Tupel aus ergibt. Dies könnte man als Argument dafür ansehen, die Übergangsmatrix direkt als ihre Transponierte anzusetzen, doch betrachtet man das in Fakt beschriebene Transformationsverhalten als ausschlaggebend.

Wenn

und die Standardbasis davon ist und eine weitere Basis, so erhält man die Übergangsmatrix von nach , indem man als Linearkombination der Basisvektoren ausdrückt und die entsprechenden Tupel als Spalten nimmt. Dagegen besteht einfach aus den als Spalten geschrieben.