Determinante/Rekursiv/Alternierend/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Wir beweisen die Aussage durch Induktion über , wobei es für nichts zu zeigen gibt. Sei also und . Die relevanten Zeilen seien und mit . Nach Definition ist . Nach Induktionsvoraussetzung sind dabei für , da ja dann zwei Zeilen übereinstimmen. Damit ist

wobei ist. Die beiden Matrizen und haben die gleichen Zeilen, allerdings tritt die Zeile in als die -te Zeile und in als die -te Zeile auf. Alle anderen Zeilen kommen in beiden Matrizen in der gleichen Reihenfolge vor. Durch insgesamt Vertauschungen von benachbarten Zeilen kann man in überführen. Nach der Induktionsvoraussetzung und Fakt unterscheiden sich daher die Determinanten um den Faktor , also ist . Setzt man dies oben ein, so erhält man

Zur bewiesenen Aussage