Differenzierbare Funktion/Äquivalenzrelation durch Ableitungsbedingung/Aufgabe
Erscheinungsbild
Es sei die Menge der zweimal stetig differenzierbaren Funktionen von nach . Definiere auf eine Relation durch
a) Zeige, dass dies eine Äquivalenzrelation ist.
b) Finde für jede Äquivalenzklasse dieser Äquivalenzrelation einen polynomialen Vertreter.
c) Zeige, dass diese Äquivalenzrelation mit der Addition von Funktionen verträglich ist.
d) Zeige, dass diese Äquivalenzrelation nicht mit der Multiplikation von Funktionen verträglich ist.