Beweis
(1) folgt wegen
-
direkt aus der
Abschätzung von Cauchy-Schwarz.
(2) ergibt sich aus den Zusätzen zur Abschätzung von Cauchy-Schwarz, siehe
Aufgabe.
(3). Aus (1) und (2) folgt, dass
gilt, und dass diese beiden Vektoren die einzigen Vektoren der Norm sind, für die diese Gleichung gilt. Wenn man links die Betragstriche weglässt, so gilt die Gleichheit für nach wie vor, da das Skalarprodukt positiv definit ist.