Differenzierbare Mannigfaltigkeit/Differenzierbare Kurve/Tangential äquivalent/Äquivalenzrelation/Fakt/Beweis
Erscheinungsbild
Beweis
Die Reflexiviät und die Symmetrie der Relation sind unmittelbar klar. Zum Nachweis der Transitivität seien drei differenzierbare Kurven
gegeben, wobei wir sofort annehmen dürfen, dass sie auf dem gleichen offenen Intervall definiert sind. Es seien offene Mengen, mit denen man die tangentiale Gleichheit von und bzw. von und nachweisen kann. Dann kann man nach Fakt mit die tangentiale Gleichheit von und nachweisen.