Zum Inhalt springen

Eigentheorie/Endomorphismus/Unter Isomorphismus/Fakt

Aus Wikiversity

Es sei

ein Endomorphismus auf dem -Vektorraum und es sei

ein Isomorphismus von -Vektorräumen. Es sei

Dann gelten folgende Aussagen.
  1. Ein Vektor ist genau dann Eigenvektor zu zum Eigenwert , wenn ein Eigenvektor zu zum Eigenwert ist.
  2. und besitzen die gleichen Eigenwerte.
  3. Die Abbildung induziert für jedes einen Isomorphismus