Extrema von y auf Graph/Aufgabe
Zur Navigation springen
Zur Suche springen
Es sei
eine stetig differenzierbare Funktion.
a) Zeige, dass in einem Punkt genau dann ein lokales Maximum besitzt, wenn die Einschränkung der Funktion
auf den Graphen
im Punkt ein lokales Maximum besitzt.
b) Wie steht in dieser Situation der Satz über Extrema mit Nebenbedingungen mit dem eindimensionalen notwendigen Kriterium für ein lokales Extremum in Verbindung?
c) Man gebe ein Beispiel von zwei stetig differenzierbaren Funktionen
und einem Punkt derart, dass und
linear abhängig sind und dass auf der Faser zu durch kein lokales Extremum besitzt.