Zum Inhalt springen

Folge/n-te Wurzel aus n/Monotonie ab 3/Aufgabe/Lösung

Aus Wikiversity


Wir schreiben

1. Wir erlauben auch reelle Argumente, d.h. wir betrachten die Funktion

und zeigen, dass diese Funktion für fallend ist; dies gilt dann insbesondere für die natürlichen Zahlen . Da die Exponentialfunktion monoton wachsend ist, genügt es zu zeigen, dass

für fallend ist. Dazu ziehen wir Fakt heran und betrachten die Ableitung der differenzierbaren Funktion . Diese ist

Für ist und somit ist der Zähler negativ, also ist die Funktion negativ.

2. Wir zeigen, dass für gegen konvergiert. Wegen der Monotonie aus Teil 1 kann man statt auch einsetzen, was zur Folge führt. Für diese Folge gilt

ihr Grenzwert ist nach dem Quetschkriterium also . Da die Exponentialfunktion stetig ist, konvergiert somit gegen .