Ganzheitsring/Wurzel -5/Standardideal/Garbe/Invertierbar/Beispiel

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Im quadratischen Zahlbereich gilt die Gleichheit

Wir betrachten das Ideal (das ein Primideal ist und kein Hauptideal) und die zugehörige Idealgarbe auf . Das Spektrum wird durch die beiden offenen Mengen und überdeckt. Es ist , da zum Ideal gehört und daher das Ideal in der Nenneraufnahme zum Einheitsideal wird. In der Nenneraufnahme (also auf ) ist hingegen

und somit ist ein Hauptideal mit dem Erzeuger . Daher ist und ist eine invertierbare Garbe.