Integration/Analysis in mehreren Variablen/Satzabfrage/2/Aufgabe/Lösung

Aus Wikiversity


  1. Es seien , , Polynome und es sei

    mit verschiedenen . Dann gibt es ein eindeutig bestimmtes Polynom und eindeutig bestimmte Koeffizienten , , , mit

  2. Es sei ein kompaktes Intervall und

    eine stetig differenzierbare Abbildung. Dann ist rektifizierbar und für die Kurvenlänge gilt

  3. Sei im Punkt total differenzierbar mit dem totalen Differential . Dann ist in in jede Richtung differenzierbar, und es gilt
  4. Es seien und euklidische Vektorräume, sei offen und es sei

    eine stetig differenzierbare Abbildung. Es sei ein Punkt derart, dass das totale Differential

    bijektiv ist. Dann gibt es eine offene Menge und eine offene Menge mit und mit derart, dass eine Bijektion

    induziert, und dass die Umkehrabbildung

    ebenfalls stetig differenzierbar ist.