Zum Inhalt springen

Invariantentheorie/Endliche Gruppe/Satz von Noether/Fakt/Beweis

Aus Wikiversity
Beweis

Es sei

Nach Fakt ist eine ganze Erweiterung. Zu jedem gibt es daher eine Ganzheitsgleichung

mit . Wir betrachten die von den Koeffizienten erzeugte -Unteralgebra von , also

Dabei ist endlich erzeugt, und sämtliche Ganzheitsgleichungen sind über formulierbar, d.h. nach Fakt, dass auch über ganz ist. Da über endlich erzeugt ist, ist insbesondere über endlich erzeugt, sodass nach Fakt sogar endlich ist. Da noethersch ist, muss nach Fakt auch die -Unteralgebra ein endlicher -Modul sein. Damit ist insgesamt eine endlich erzeugte -Algebra.