Kommutative Algebra/Modulhomomorphismus/Faktorisierung/Fakt/Beweis
Erscheinungsbild
Beweis
Dies folgt direkt aus Fakt, dem entsprechenden Satz für Gruppen, weil jeder Modulhomomorphismus insbesondere ein Gruppenhomomorphismus ist und weil die resultierenden Gruppenhomomorphismen , und Modulhomomorphismen sind. Bei ist das so, weil es die kanonische Projektion ist; bei ist das so, weil es die Inklusion eines Untermoduls darstellt. Bei muss die selbe Eigenschaft dann zwingend gelten, da ansonsten niemals gelten könnte.