Komplexe Zahlen/Folgen/Reeller Bezug/Textabschnitt
Mit Hilfe des Betrages kann man für zwei komplexe Zahlen den Abstand durch
erklären. Dieser ist eine nichtnegative reelle Zahl. Mit diesem Abstandsbegriff lässt sich der Konvergenzbegriff für Folgen reeller Zahlen unmittelbar auf Folgen komplexer Zahlen verallgemeinern. Eine Folge komplexer Zahlen setzt sich aus zwei reellen Folgen zusammen: Jedes kann man als
schreiben, wobei eben der Realteil und der Imaginärteil von ist. Dabei gilt die Beziehung, dass die komplexe Folge genau dann konvergiert, wenn die beiden reellen Folgen und in konvergieren. Für den Grenzwert gilt dabei
siehe Aufgabe.
Mit dieser Beziehung kann man viele Gesetzmäßigkeiten für komplexe Folgen direkt aus der entsprechenden reellen Situation erhalten. Wir erwähnen explizit die folgenden Rechenregeln.
Es seien und konvergente Folgen in . Dann gelten folgende Aussagen.
- Die Folge ist konvergent und es gilt
- Die Folge ist konvergent und es gilt
- Für
gilt
- Es sei
und
für alle
.
Dann ist ebenfalls konvergent mit
- Es sei
und
für alle
.
Dann ist ebenfalls konvergent mit