Komplexe Zahlen/Gitter/Torus/Bemerkung

Aus Wikiversity

Ein komplexer Torus (eine elliptische Kurve über ) ist durch eine Vielzahl an Strukturen ausgezeichnet, die sich teilweise gegenseitig bedingen. Nach Fakt handelt es sich um eine eindimensionale komplexe Mannigfaltigkeit, also eine riemannsche Fläche. Damit ist sie insbesondere eine zweidimensionale reelle Mannigfaltigkeit. Ihre topologische Gestalt ist schon in Fakt beschrieben worden, es handelt sich um einen Torus, ein Produkt der -Sphäre mit sich selbst, also . Insbesondere ist ein komplexer Torus kompakt. Ferner ist ein komplexer Torus nach Fakt eine komplexe Lie-Gruppe, es gibt eine Addition auf ihr, die sie zu einer kommutativen Gruppe macht, bei der die Addition und die Negation holomorph sind. Die Abbildung

ist holomorph und ein Gruppenhomomorphismus, genauer ein Homomomorphismus von komplexen eindimensionalen Lie-Gruppen. Als topologische Gruppe bzw. als reelle Lie-Gruppe handelt es sich einfach um das Produkt der Kreisgruppe mit sich selbst. Die reelle Mannigfaltigkeitsstruktur und die Struktur als reelle Lie-Gruppe ist also für jeden komplexen Torus gleich. Dagegen hängen die Eigenschaften eines komplexen Torus als komplexe Mannigfaltigkeit bzw. als komplexe Lie-Gruppe wesentlich vom Gitter ab. Es gibt eine Vielzahl von unterschiedlichen komplexen Tori. Man kann auch so sagen, dass es auf der einen reellen Mannigfaltigkeit eine Vielzahl an komplexen Strukturen gibt.