Komplexe Zahlen/Polarkoordinaten/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Wegen Fakt ist

d.h. ist als Betrag der komplexen Zahl festgelegt. Wir können durch den Betrag teilen und können dann davon ausgehen, dass eine komplexe Zahl mit und mit vorliegt. Es ist dann zu zeigen, dass es eine eindeutige Darstellung

gibt. Bei (bzw. ) ist und (bzw. ) ist die einzige Lösung. Wir zeigen, dass es für ein gegebenes stets genau zwei Möglichkeiten für mit gibt, und eine davon wird durch das Vorzeichen von ausgeschlossen. Bei gibt es aufgrund von Fakt ein eindeutiges mit . Für dieses gilt wegen und . Bei gibt es wiederum ein eindeutiges mit . Wegen ist dies aber keine Lösung für beide Gleichungen. Stattdessen erfüllt beide Gleichungen.

Zur bewiesenen Aussage