Zum Inhalt springen

Komplexes Quadrieren/Reell/Cauchy-Riemann Differentialgleichung/Beispiel

Aus Wikiversity

Wir betrachten die differenzierbare Abbildung

die dem komplexen Quadrieren entspricht. Die Jacobi-Matrix davon ist

Diese erfüllt die Symmetriebedingungen der Cauchy-Riemannschen Differentialgleichungen in jedem Punkt, die ja nach Fakt für jede komplex-differenzierbare Abbildung gelten müssen.