Zum Inhalt springen

Konstruierbare Erweiterung/Galoistheoretische Charakterisierung/Fakt

Aus Wikiversity
Galoistheoretische Charakterisierung von konstruierbaren Zahlen

Es sei ein Unterkörper und . Dann sind folgende Aussagen äquivalent.

  1. Die komplexe Zahl ist aus konstruierbar.
  2. Es gibt in eine Körperkette aus quadratischen Körpererweiterungen

    mit .

  3. Das Element ist algebraisch über , und der Grad des Zerfällungskörpers von über ist eine Zweierpotenz.
  4. Das Element ist algebraisch über , und die Ordnung der Galoisgruppe des Zerfällungskörpers von über ist eine Zweierpotenz.
  5. Es gibt eine endliche Galoiserweiterung (in ) mit , deren Grad eine Zweierpotenz ist.