Kosinus/R/Additionstheorem/Potenzreihe direkt/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Der -te Summand (also derjenige Term, der sich auf die Potenz mit Exponenten bezieht) in der Kosinusreihe (die Koeffizienten zu , ungerade, sind ) von ist

wobei wir im letzen Schritt die Indexmenge in gerade und ungerade Zahlen aufgeteilt haben.

Der -te Summand im Cauchy-Produkt von und ist

und der -te Summand im Cauchy-Produkt von und ist

Daher stimmen die beiden Seiten des Additionstheorems im geraden Fall überein. Bei einem ungeraden Index ist die linke Seite gleich . Da in der Kosinusreihe nur gerade Exponenten vorkommen, kommen im Cauchy-Produkt der beiden Kosinusreihen nur Exponenten der Form mit gerade vor. Da in der Sinusreihe nur ungerade Exponenten vorkommen, kommen im Cauchy-Produkt der beiden Sinusreihen nur Exponenten der Form mit gerade vor. Deshalb kommen Ausdrücke der Form mit ungerade weder links noch rechts vor.