Kurs:Algebraische Kurven (Osnabrück 2012)/Arbeitsblatt 17/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

\setcounter{section}{17}






\zwischenueberschrift{Aufwärmaufgaben}




\inputaufgabe
{}
{

Betrachte den Monoidhomomorphismus
\mathdisp {\N^2 \longrightarrow \Z,\, e_1 \longmapsto 1,\, e_2 \longmapsto -1} { . }
Beschreibe die zugehörige Abbildung zwischen den Monoidringen (für einen Körper $K$) und den zugehörigen $K$-Spektren.

}
{} {}




\inputaufgabe
{}
{

Seien
\mathl{M \subseteq N}{} kommutative Monoide. Zeige, dass durch
\mavergleichskettedisp
{\vergleichskette
{ \tilde{M} }
{ =} { { \left\{ n \in N \mid \text{es gibt } k \in \N_+ \text{ mit } kn \in M \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{} ein Untermonoid von $N$ gegeben ist, das $M$ umfasst.

}
{} {}




\inputaufgabe
{}
{

Wir betrachten die kommutativen Monoide
\mathl{M=\N^r}{} und
\mathl{N={\mathbb N}^s}{.} Zeige, dass ein Monoidhomomorphismus von $M$ nach $N$ eindeutig durch eine Matrix (mit $r$ Spalten und $s$ Zeilen) mit Einträgen aus $\N$ bestimmt ist.

}
{Wie sieht die zugehörige Spektrumsabbildung aus?} {}




\inputaufgabe
{}
{

Sei $M$ ein kommutatives \definitionsverweis {Monoid}{}{.} Zeige, dass die zugehörige \definitionsverweis {Differenzengruppe}{}{}
\mathl{\Gamma=\Gamma(M)}{} eine kommutative \definitionsverweis {Gruppe}{}{} ist, und dass sie folgende universelle Eigenschaft besitzt: Zu jedem \definitionsverweis {Monoidhomomorphismus}{}{} \maabbdisp {\varphi} {M} {G } {} in eine Gruppe $G$ gibt es einen eindeutig bestimmten \definitionsverweis {Gruppenhomomorphismus}{}{} \maabbdisp {\tilde{\varphi}} {\Gamma} {G } {,} der $\varphi$ fortsetzt.

}
{} {}




\inputaufgabe
{}
{

Sei $M$ ein kommutatives \definitionsverweis {Monoid}{}{} mit zugehöriger \definitionsverweis {Differenzengruppe}{}{}
\mathl{\Gamma=\Gamma(M)}{.} Zeige, dass folgende Aussagen äquivalent sind. \aufzaehlungdrei{$M$ ist ein \definitionsverweis {Monoid mit Kürzungsregel}{}{.} }{Die kanonische Abbildung
\mathl{M\rightarrow \Gamma(M)}{} ist injektiv. }{$M$ lässt sich als Untermonoid einer Gruppe realisieren. }

}
{} {}




\inputaufgabe
{}
{

Sei $R$ ein kommutativer Ring. Beweise die $R$-\definitionsverweis {Algebraiso\-mor\-phie}{}{}
\mavergleichskettedisp
{\vergleichskette
{ R[\Z^n] }
{ \cong} { R[X_1 , \ldots , X_n]_{X_1 \cdots X_n} }
{ } { }
{ } { }
{ } { }
} {}{}{} mit Hilfe der universellen Eigenschaften von Monoidringen und Nenneraufnahmen.

}
{} {}




\inputaufgabe
{}
{

Seien $M,N$ endlich erzeugte kommutative Monoide mit den $K$-Spektren
\mathl{K\!-\!\operatorname{Spek}\, { \left( K[M] \right) }=\operatorname{Mor}_{ \operatorname{mon} } \, (M, K)}{} und
\mathl{K\!-\!\operatorname{Spek}\, { \left( K[N] \right) }=\operatorname{Mor}_{ \operatorname{mon} } \, (N, K)}{.} Zeige, dass man für einen Monoidhomomorphismus
\mathl{\varphi:M \rightarrow N}{} die zugehörige Spektrumsabbildung auf zwei verschiedene Weisen definieren kann, die aber inhaltlich übereinstimmen.

}
{} {}

Die nächste Aufgabe verwendet die folgende Definition.

Ein \definitionswort {Filter}{} $F$ in einem \definitionsverweis {kommutativen Monoid}{}{} $M$ ist ein \definitionsverweis {Untermonoid}{}{,} das zusätzlich \definitionswort {teilerstabil}{} ist. D.h. falls $f \in F$ ist und $g|f$ gilt, so ist auch $g \in F$.





\inputaufgabe
{}
{

Sei $M$ ein \definitionsverweis {kommutatives Monoid}{}{.} Zeige, dass es in $M$ einen kleinsten \definitionsverweis {Filter}{}{} gibt und dass dieser eine \definitionsverweis {Gruppe}{}{} bildet.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{}
{

Seien
\mathl{M \subseteq N}{} endlich erzeugte kommutative Monoide. Zeige, dass für einen Körper $K$ der Ringhomomorphismus
\mathl{K[M] \subseteq K[N]}{} genau dann \definitionsverweis {endlich}{}{} ist, wenn es zu jedem
\mathl{n \in N}{} ein
\mathl{k \in \N_+}{} mit
\mathl{kn \in M}{} gibt.

}
{} {}




\inputaufgabe
{}
{

Sei
\mathl{M=(\Q,+)}{} die additive Gruppe der rationalen Zahlen. Bestimme
\mathl{\Q\!-\!\operatorname{Spek}\, { \left( \Q[M] \right) }}{.} Wie sieht es aus, wenn man $\mathbb Q$ durch $\mathbb R$ ersetzt?

}
{} {}




\inputaufgabe
{}
{

Es sei \maabb {\varphi} {M} {N } {} ein Homomorphismus von kommutativen Monoiden. Zeige, dass die Menge aller Punkte aus
\mathl{K-\operatorname{Spec} \, K[N]}{,} die unter der Spektrumsabbildung auf den Einspunkt
\mathl{1 \in K-\operatorname{Spek} \,(K[M])}{}  \zusatzklammer {das ist der Punkt, der der konstanten Abbildung $M \mapsto 1$ entspricht} {} {} abgebildet werden, selbst die Struktur eines $K$-Spektrums eines geeigneten Monoids besitzt.

}
{} {}




\inputaufgabe
{}
{

Wir betrachten Monoide der Form
\mathl{M=(\Z/(m),+)}{.} Beschreibe
\mathl{K-\operatorname{Spek} \, (K[M])}{} allgemein sowie für die Körper
\mathl{K=\R, {\mathbb C}, \Z/(5)}{.} Finde die idempotenten Elemente von
\mathl{\mathbb C[\Z/(3)]}{.}

}
{} {}




\inputaufgabe
{}
{

Sei $M$ ein kommutatives Monoid. Definiere eine Bijektion zwischen den folgenden Objekten. \aufzaehlungvier{\definitionsverweis {Filter}{}{} in $M$. }{
\mathl{\operatorname{Mor}_{ \operatorname{mon} } \, (M, (\{0,1\},1,\cdot))}{.} }{
\mathl{{\mathbb F}_2-\operatorname{Spek} \, (M)}{} }{
\mathl{{ \left\{ \varphi \in K\!-\!\operatorname{Spek}\, { \left( K[M] \right) } \mid \varphi(M) \subseteq \{0,1\} \right\} }}{.} \zusatzklammer {Dabei ist $K$ ein Körper.} {} {} }

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein Körper und $G$ eine Gruppe. Dann können wir den Monoidring $K[G]$ betrachten. Sei nun weiter $M$ ein $K[G]$-Modul. Zeige, dass \aufzaehlungzwei { $M$ nichts anderes ist als ein $K$-Vektorraum $V$ zusammen mit einem Gruppenhomomorphismus
\mathl{\rho: G \to \operatorname{Aut}_K(V)}{.} } {ein $K[G]$-Modulhomomorphismus
\mathl{\varphi: M \to M}{} eine $K$-lineare Abbildung ist, für die zusätzlich
\mathl{\verknuepfung {\rho(g)} {\varphi} =\verknuepfung { \varphi} {\rho(g)}}{} für alle $g \in G$ gilt. }

}
{Bemerkung: $\rho$ heißt dann eine \stichwort {Darstellung} {} von $G$. Solche Darstellungen sind oft einfacher zu handhaben als $G$ und man kann mit Hilfe von $\rho$ oft hilfreiche Erkenntnisse über $G$ selbst gewinnen.} {}



<< | Kurs:Algebraische Kurven (Osnabrück 2012) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)